Home | About us | Editorial board | Search | Ahead of print | Current issue | Archives | Submit article | Instructions| Reviewers

Login 
  Home Print this page Email this page Small font sizeDefault font sizeIncrease font size Users Online: 633    
     
REVIEW ARTICLE
Year : 2022  |  Volume : 12  |  Issue : 2  |  Page : 160-170

Flexural strength of CAD/CAM denture base materials: Systematic review and meta-analysis of in-vitro studies


Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, Kingdom of Saudi Arabia

Correspondence Address:
Dr. Reem Abualsaud
Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441.
Kingdom of Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jispcd.JISPCD_310_21

Rights and Permissions

Introduction: Digital complete dentures fabrication techniques are expanding. This study aimed to review flexural strength (FS) of milled and 3D-printed denture base materials to answer the study question: is FS of computer-aided designing/computer-aided manufacturing (CAD/CAM) denture base comparable to conventional heat-polymerized materials?Materials and Methods: Search was done within different databases for articles published between January 2010 and June 2021 using specific keywords. Articles of in-vitro studies in English language with methods following International Standards Organization standardization/ADA specifications for flexural testing of conventional and CAD/CAM (milled or printed) polymethyl methacrylate (PMMA) materials were included. Results: Out of the 61 studies, 9 were processed for data extraction and only 7 underwent meta-analysis. Two, six, and one study showed high, moderate, and low risk of bias, respectively. Random-effects model was used for analysis and resulted in the average FS of 120.61 MPa [95% confidence interval (CI): 109.81−131.41] and 92.16 MPa (CI: 75.12−109.19) for CAD/CAM milled and heat-polymerized PMMA, respectively. Conclusion: Subtractive CAD/CAM technique of denture fabrication showed satisfactory FS values, whereas additive CAD/CAM method was comparable to conventional heat-polymerized technique with lower value, requiring further investigations and improvement. The clinical use of milled denture bases is an acceptable substitution to heat-polymerized PMMA, making the denture fabrication an easier and faster process.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1206    
    Printed54    
    Emailed0    
    PDF Downloaded214    
    Comments [Add]    

Recommend this journal